

The University of Manchester

The dijet cross-section with a jet veto

Simone Marzani University of Manchester

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011)

April 11th - 15th , 2011

Newport News, VA USA

in collaboration with R. Duran, J. Forshaw and M. Seymour

Outline

- The dijet cross-section with a jet veto
- Soft gluon resummation
- Non global effects
- Resummation VS Monte Carlo
- Resummation VS Data (work in progress)
- Conclusions

The observable

Production of two jets with

- transverse momentum Q
- rapidity separation Y

$$Y = |y_3 - y_4| - 2D$$

$$D \geq R$$
 azimuthally symmetric gap

$$D = 0$$
 ATLAS choice

• Emission with $k_T > Q_0$ forbidden in the inter-jet region

Q₀ can be rather large: the gap is a region of limited hadronic activity

ATLAS measurement

 $\Delta y = \text{distance between jet centres}$, i.e. non-azimuthally symmetric gap.

- PYTHIA seems to do a good job
- However the spread in the results of different generators is not satisfactory
- Comparison also to POWEG and HEJ (not discussed here)

Plenty of QCD effects

"wider" gaps

Y

Forward BFKL (Mueller-Navelet jets)

> 800000 800000 800000 800000

Non- forward BFKL (Mueller-Tang jets)

Super-leading logs

Wide-angle soft radiation

Fixed order

$$L=\ln rac{Q}{Q_0}$$
 "empt

Higgs +2 jets

Weak boson fusion

Gluon fusion

- Different QCD radiation in the inter-jet region
- To enhance the WBF channel, one can make a veto Q_0 on additional radiation between the tagged jets
- QCD radiation as in dijet production

Forshaw and Sjödahl arXiv:0705.1504 [hep-ph]

• Studying the cross-section as a function of the veto scale one can simultaneously extract the couplings of the Higgs boson

Soft gluons resummation

 Real and virtual contributions cancel everywhere except within the gap region for

$$k_T > Q_0$$

• One only needs to consider virtual corrections with

$$Q_0 < k_T < Q$$

• Leading logs (LL) are resummed by iterating the one-loop result:

Colour evolution

The anomalous dimension can be written as

$$\Gamma = \frac{1}{2} Y T_t^2 + i \pi T_1 \cdot T_2 + \frac{1}{4} \rho (T_3^2 + T_4^2)$$

$$T_t^2 = (T_1^2 + T_3^2 + 2T_1 \cdot T_3)$$

is the colour exchange in the t-channel

- The $i\pi$ term is due to Coulomb (Glauber) gluon exchange
- Coulomb gluon contributions are *not* implemented in parton showers

Non-global effects

Dasgupta and Salam hep-ph/0104277

- However this approach completely ignores a whole tower of LL
- Virtual contributions are not the whole story because real emissions out of the gap are forbidden to remit back into the gap

Resummation of non-global logarithms

- The full LL result is obtained by dressing the 2 to *n* (i.e. *n-2* out of gap gluons) scattering with virtual gluons (and not just 2 to 2)
- The colour structure soon becomes intractable
- Resummation can be done (so far) only in the large N_c limit

Dasgupta and Salam hep-ph/0104277

Banfi, Marchesini and Smye hep-ph/0206076

• As a first step we compute the tower of logs coming from only one out-of-gap gluon but keeping finite N_c :

$$\sigma^{(1)} = -\frac{2\alpha_s}{\pi} \int_{Q_0}^{Q} \frac{dk_T}{k_T} \int_{\text{out}} (\Omega_R + \Omega_V)$$

Global logs and Coulomb gluons (no gluon outside the gap)

$$f^{(0)} = \sigma^{(0)} / \sigma^{\text{born}}$$

- solid lines: full resummation
- dashed lines: ignoring $i \pi$'s

$$\sqrt{S} = 14 \text{ TeV}$$
 $Q_0 = 20 \text{ GeV}$
 $R = 0.4$
 $\eta_{\text{cut}} = 4.5$

contributions!

Comparison to HERWIG++ (gap cross-section)

- We compare our results to HERWIG++
- LO scattering + parton shower (no hadronisation)
- Q is the mean p_T of the leading jets
- Jet algorithm SIScone

- The overall agreement is encouraging
- One should compare the histogram to the dotted curve
- Precise understanding of parton showers is important

Colour radiation in Herwig++

- The colour partner of gluon 3 is chosen in each event between 1 and 4 with equal probability
- If the partner is on the same side of the gap there is very little radiation

• Inclusive interjet radiation

• Suppression factor for radiation in the gap

$$e^{-N_c \rho \xi} \left[\frac{1}{2} + \frac{1}{2} e^{-N_c Y \xi} \right]^4 \simeq \frac{1}{16} e^{-N_c \rho \xi}$$

• This vanishes slower than the soft gluon exponential

$$\sim \sum_{i} e^{-N_c(\rho + A_i Y)\xi}, \quad A_i > 0$$

• This led to a modification of the Herwig++ parton shower

Resummation and kinematics

- When compared to the data our resummation performs poorly
- Why is that?
 - has the full colour structure
 - has approximate non-global logs
 - does not conserve energy and momentum (eikonal approximation)
- Because of the fairly large value of Q_0 the region considered is not asymptotic and fixed-order effects are not negligible
- Thus we need matching to fixed order

Matching to fixed order

$$f = 1 + \alpha_s c_1 + \alpha_s^2 c_2 + \dots$$

- Fixed order computed with NLOJET++
- Check of the logs using the distribution

• The LO matching can be done with just tree-level matrix elements: studies with Madgraph as well

The matched gap fraction

$$f = f_{\rm res}(1 + \alpha_s c_0)e^{\alpha_s d_0}$$

$$b_0 = c_0 + d_0$$

Obtained from fixed order calculation with the logarithm subtracted

To do:

- check these results
- include non-global logs
- include scale uncertainties
- matching to the next order

Conclusions

- I have discussed the dijet cross-section with a jet veto
- This observable has been already measured by ATLAS
- It is sensitive to soft-gluon radiation and non global logarithms
- An analytical study suggested a way to improve parton showers
- In order to perform phenomenology our resummation must be matched to the fixed order calculation (work in progress)